The Kardar-Parisi-Zhang
equation and universality class ||

Some exactly solvable models in the KPZ universality class
More interesting mappings
Relation to random matrices

Replica approach



Recapitulation

Non-linear growth as a stochastic, off-equilibrium phenomenon

with

Self-similarity / scale invariance

Non-trivial critical exponents

Universality

Exactly solvable models:
exact exponents AND exact scaling functions!



Recapitulation

. . . 9 p|
Interesting mappings: KPZ growth equation %) = Vo + VV2h + E(Vh)2 +1(x,1)
<>

Burger's equation (fluid dynamics) Oyv + (v - V)v = vV?v — AVn
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Recapitulation

. . . 9 A
Interesting mappings: KPZ growth equation 5% 1) = Vo + vV2h + E(Vh)2 +1(x,1)
<>

Burger’s equation (fluid dynamics) ;v + (v - V)v = vV2v — A\Vn
—

<>
Directed polymer in random media

Z(at) = /(:::)z()j)l)[u(t)] exp —% (% /0 Cdi /0 t An(u(t),t)ﬂ

(u(t)=x) 1
= / D[u(t)] exp _T (Eel + Epot)]
(u(0)=0) L




Recapitulation

Scaling of directed polymers in 1+1 dimension

Free energy fluctuations SF ~ p9=1/3
Lateral displacements: “roughness” €T ~ 5CZ2/ 3
Statistical tilt symmetry: 0 =2C—1

Both reflect the dominance of disorder!




Recapitulation

Scaling of directed polymers in 1+1 dimension

Free energy fluctuations OF ~ ¢9=1/3 7
Lateral displacements: “roughness” T ~~ 8CZ2/ 3 v
Statistical tilt symmetry: 0 =2C—1

Notable aspects:
1. Rougher than a random walk. 1/2
Disorder dominates entropy! C > /

2. Free energy fluctuates less than a random sum! 0 < 1/ 2



Exactly solvable models and a few
more interesting mappings



Polynuclear growth model

Discrete height: h € N

Continuum in space x and time t

« - <-|-|->

>~ 3. Plateaux merge on meeting
lateral expansion of plateaux 1 annihilation of steps
\ 4P 2. Nuclei spread with speed v =1 to
B |l both sides
nucleation\ 4+
Jl» 1. Random nucleation events (x ( 1h),
with density pdaxdt (p=1)

h
Yol h@atn) = Bz, te) + 1




Polynuclear growth model

“Circular model” <«  (h(z,t)) = /2(t2 — 2?)

Nucleation only in the regime ‘CE‘ S t

Height profile 0,) T

# of nuclei N, =
Poiss(t2/2)

S

h(0,t) = #height steps S\,
= maximal number of
nuclei on forward

pointing “world line” e nucleations

\ / steps

Like DPRM with point
defects!



Polynuclear growth model

“Circular model” <«  (h(z,t)) = /2(t2 — 2?)

Nucleation only in the regime ‘CC| S t

Height profile 0,0) T

# of nuclei N, =
Poiss(t2/2)

S

h(0,t) = #height steps 2\
= maximal number of
nuclei on forward

pointing “world line” e nucleations

\ / steps

Like DPRM with point
defects!

Nuclei define a random
permutation!

Ulam’s problem:

Maximal increasing
subsequence of the
permutation?

Maximizing world line
< length of maximal
increasing
subsequence

= h(0,t)!



Polynuclear growth model

“Circular model” < (h(z,t)) = /2(t2 — 2?)

Nucleation only in the regime ‘CC‘ <t

Exact solution via combinatorics!
Height profile 0,0) (Baik, Deift Johansson ‘99)

_ h(0,t) = V2t + (t/V2)" 31w
# of nuclei N, =

Poiss(t2/2) s

r Height fluctuations/length of
maximal increasing subsequence
are distributed according to

h(0,t) = #height steps NN 1
= maximal number of '

nuclei on forward Tracy-Widom distribution,
pointing “world line” N like A,,,,, Of random (Gaussian
(0,0) unitary GUE) matrix!  WHY??

Like DPRM with point
defects!



Polynuclear growth model

“Flat model”: no restriction on x

Height profile Note: Only
nucleations in
t backward light cone
X of (x,t) influence h(xt)

e nucleations
tr=0 \/ steps

Path maximizing number of nuclei may start at any x at t=0
(line-to-point).



Polynuclear growth model

“Flat model”: no restriction on x
(0,7)

Height profile "
~> t=0

mirror image

Path maximizing number of nuclei may start at any x at t=0
(line-to-point). Point-to-point from time-reversed mirror image!



Polynuclear growth model

“Flat model”: no restriction on x

Height profile

mirror 1mage

<>

Path maximizing number of nuclei may start at any x at t=0 5h O t distributed like
(line-to-point). Point-to-point from time-reversed mirror image! Ay OF TRS matrix (GOE)!




Tracy-Widom distribution

Stretched exponential decays, asymmetric!

- pdf
Negative height .
fluctuations are much it Gue |
more unlikely than :,-" :‘-.4 04

T T

positive ones!
(as it requires

“compression” of the - L \SGOE
. . ~ e~ mhiwl® 1 /2 O\ [N
height profile) PR NP et
—16 — —14 T —12 T .0 T é ,_b
Circular model: h0,t) = V2t + (t/V2)Y3x1w 0

Flat surface: 2h(0, 1) ~ ‘/E(Zt) + (2t/ ‘/5)1/ 3XTW (GOE)



Exactly solvable growth model

what about transport/hydrodynamics?



Exactly solvable non-linear transport
processes

A model in the spirit of Burgers equation (fluid
dynamics)

But: discrete in space, with an exact solution



Totally asymmetric exclusion process

R\

r=1
N

Lt
! ]
\-'

—ttt 11> X
e =2 -1 01 2

Hardcore particles
jump to right at rate r = 71 if
place is empty

Initially, e.g.:




Totally asymmetric exclusion process

r=1
N N
. . . = Hardcore particles
jump to right at rate r = 7 if
4> X place is empty
-~ 2 -1 0 1 2
Initially, e.g.:
Relation to growth models: . >

3 2 -1 0 2

h(x,f) o =

h(0,t) = # of particles that have passed 0 until time t (integrated current).



Totally asymmetric exclusion process

r=1
e\ ~—
>
7 v 2 -1 0 1 2
Map to a directed polymer: 3 2 1 Particle No.
Define  t;; := time, when particle ¢ makes jump j

7;.; 1= time for particle ¢ to make jump j once the next site is free
——> Random variable:  P(Ti;5) =€~

Two conditions for jump: i) particle /-1 has jumped j times; ii) particle i has jumped j-1 times

—> ti; = max(tij-1,ti-1,) + Tiy



Totally asymmetric exclusion process

r=1

e\ N
@ 00
—
7 2 -1 0 1 2
Map to a directed polymer: 3 2 1 Particle No.
T11:1
791/ N\ T1;2
/\/\
73:1
\/\>/
73:3



Totally asymmetric exclusion process

r=1
e\ N
@ 00
—t—t—t—t+—+—+> X
B w2 -1 0 1 2
Map to a directed polymer: 3 2 1 Particle No.
JN! ; 1 Time T, when the N’th particle has crossed 0O:
T72:1 />Q;2
73;1 /\ / Ty =tyny =  max Z Ti.i
\/\ N NN dir.paths p 2
\/ (i;))ep
T3:3 < minimizing the random “energy” (— ). 7) !

Special exactly solvable DPRM problem on a lattice!
—> ti; = max(ti;-1,ti-1,5) + Ty



Totally asymmetric exclusion process

Exact solution by Johansson (2010)

N
Prob[N(#) > N] = Prob[Ty < ] f[ [ Jaxi| Jei-xp?] ]e™

0,4Y -1 i<j i

N(t) : = total current through 0 until time t =h(0,t) in growth picture



Totally asymmetric exclusion process

Exact solution by Johansson (2010)

N
Prob[N(#) > N] = Prob[Ty < ] f [ Jaxi| Jei-xp?] ]e™
[

0.0% =i

i<j i
N(t) : = total current through 0 until time t =h(0,t) in growth piche

Amazingly similar to distribution for largest eigenvalue of a GUH random matrix (cf later lectures):

{

1 B 32
Prob[Amax < x] = Prob[A, -, Ay < x] = = da; | |1 =a# | [e 24 —
rob[Amax < x] = Prob[4; N <A Zf(_m’x]Nlil | [12:i -4 |i|e B =2

i<j




Totally asymmetric exclusion process
Exact solution by Johansson (2010)

Prob[N(t) > N] = Prob[Ty < t] f
[

N
0,11V 11:1[ i l_[(xi - )’ l—[ e

i<j
N(t) : = total current through 0 until time t =h(0,t) in growth pi

Difference turns
out irrelevant

CoA
\
che \
\
\
\
Amazingly similar to distribution for largest eigenvalue of a GUE

1

\

l_[ 1A — /1j|/3 l_[ o2

random mé‘trix (cf later lectures)
1 Y
Prob[Apax < x] = Prob[A4,:-- ,Ay < x] = —f dA;
ANl

i<j

B=2



<>

Totally asymmetric exclusion process

Exact solution by Johansson (2010)

N
Prob[N(#) > N] = Prob[Ty < ] f [ Jaxi| Jei-xp?] ]e™
[

0,4Y -1 i<j i

N(t) : = total current through 0 until time t =h(0,t) in growth picture

Amazingly similar to distribution for largest eigenvalue of a GUE random matrix (cf later lectures):

1 B 12
Prob[Ay.y < x] = Prob[A, -+, Ay < x] = = da | [ = 2P —24; —
rob[ x] = Prob[4, N < ] Zf(_m’x]NlT[ [ Jla-a#] ]e B=2
h(x,?)

i<j i

Again:
Tracy-Widom distribution!

t
h(0,1) = N(t) = 7 — 2733y,



Testing universality of KPZ

Amazing achievement:

Specific discrete models: off-equilibrium, random processes that have exact solutions!

Like Onsager solution for 2d Ising model — but off equilibrium and stochastic!

Several exact solutions:

 Polynuclear growth model
» Asymmetric exclusion processes
 Replica approach to directed polymers (see below)

Allpredict . Heignt distribution P (“&2-t%

) . Tracy Widom distribution!

 Two point correlation function (Sh(x,t)dh(x’,t")) (explicit but complicated)

—>  Strong indication of universality. But: does it also hold for non-solvable systems?



Calibrating KPZ parameters

In experiment (or numerics): Determine parameters Aand A :

D
A= 2 from measuring heights at constant time:

([h(x + ¢,1) — h(x, 1)]*) ~ AL,




Calibrating KPZ parameters

In experiment (or numerics): Determine parameters Aand A :

D
A= 2 from measuring heights at constant time:

([h(x + £, 1) — h(x, 1)]*) ~ AL,

A via tilt symmetry

A
Pnew(X,t) = h(x + Ast,t) +s-x + 55215



Calibrating KPZ parameters

In experiment (or numerics): Determine parameters Aand A :

D
A= 2 from measuring heights at constant time:

([h(x + £, 1) — h(x, 1)]*) ~ AL,

A via tilt symmetry

A
Pnew(X,t) = h(x + Ast,t) +s-x + 55215

s = lim <%> — — Oh
 t5o0 \ Ox UOO_UOO(S)_tE?o ot



Calibrating KPZ parameters

Finding the appropriate dimensionless coordinates to compare universal feature?



Calibrating KPZ parameters

In experiment (or numerics): Determine parameters Aand A :

D
A= 2 from measuring heights at constant time:

([h(x + £, 1) — h(x, 1)]*) ~ AL,

A via tilt symmetry

A
Pnew(X,t) = h(x + Ast,t) +s-x + 55215




Calibrating KPZ parameters

Make x and h dimensionless using A, 1, t



Calibrating KPZ parameters

Make x and h dimensionless using A, 1, t

Define =-A%1

N[ —

Crossover spatial scale at time t: £(t) = 2(T't)?/3/A4

X

(1)

Rescaled height fluctuation h(x,t) = veot + (TP (L, 1)

7

Measure statistics of y

Rescaled space coordinate (=



Tracy-Widom distribution of height

K. A. Takeuchi, M. Sano
(J. Stat. Phys. 2012)

Evidence for Geometry-Dependent Universal
Fluctuations of the Kardar-Parisi-Zhang Interfaces in
Liquid-Crystal Turbulence

Create interface by laser excitation of the darker phase
either

 inaspot — circular surface

 oralong a line — flat surface

500 pm




Tracy-Widom distribution of height

Fig. 8

K. A. Takeuchi, M. Sano
(J. Stat. Phys. 2012)

Evidence for Geometry-Dependent Universal
Fluctuations of the Kardar-Parisi-Zhang Interfaces in
Liquid-Crystal Turbulence

rescaled height ¢

Histogram of the rescaled local height g=(h—v , t)/(I't)*/3 for the circular (solid symbols) and flat (open
symbols) interfaces. The blue circles and red diamonds display the histograms for the circular

interfaces at t=10 s and 30 s, respectively, while the turquoise up-triangles and purple down-triangles
500 pm

are for the flat interfaces at =20 s and 60 s, respectively. The dashed and dotted curves show the GUE
and GOE TW distributions, respectively, defined by the random variables y gyg and x gog. (Color
figure online)



Tracy-Widom distribution of height

Fig. 8

K. A. Takeuchi, M. Sano
(J. Stat. Phys. 2012)

Evidence for Geometry-Dependent Universal
Fluctuations of the Kardar-Parisi-Zhang Interfaces in
Liquid-Crystal Turbulence

rescaled height ¢

Histogram of the rescaled local height g=(h—v , t)/(I't)*/3 for the circular (solid symbols) and flat (open
symbols) interfaces. The blue circles and red diamonds display the histograms for the circular

interfaces at t=10 s and 30 s, respectively, while the turquoise up-triangles and purple down-triangles
500 pm

are for the flat interfaces at =20 s and 60 s, respectively. The dashed and dotted curves show the GUE
and GOE TW distributions, respectively, defined by the random variables x gyg and x gog. (Color
figure online)



The directed polymer

A toy glass problem!

An instructive example for the crux of random partition functions

Minima of polymers from apex
to a chosen base line point

Very interesting
fractal-like structure of

configuration space: Interesting questions?

- How does this picture
change as we

 change disorder
LA I i AL * apply some force
ok oo ot o Sty fpeed - Howhard s t to pull the

Each polymer (crossing 500 bonds) has one end fixed to the p0|ymel’ a|0ng the baSG

apex of the triangle, the other to various points on its base, and I 9
finds the optimal path in between. Ine:



Sums over paths

appear in many circumstances:

 directed polymer (elastic line in disorder potential)
As model for:
 Domain wall between two ferromagnetic domains
« \Vortices in supercnductors

« High T expansion, e.g. of a random ferromagnetic Ising model:
spin-spin correlator = sum over bonds connecting two points

« Decay of strongly localized quantum wavefunctions
(path amplitudes can be negative/complex)

« Light propagation through heterogeneous (turbulent) medium (unitary)



Directed paths

Often, one can neglect overhangs of interfaces, at least at a coarse-grained level

Propagation
direction
A

Directed path,
“only going forward”




Directed paths

e.g. directed polymer on a lattice:

Z(X,t) = Z o B o< < Vi)
m:x(0)=0—xz(t)=X

‘2‘2‘2‘22:20A t (no elastic cost since all paths are equally long)




Directed paths

e.g. directed polymer on a lattice:

Z(X,t) = Z o B o< < Vi)
m:x(0)=0—xz(t)=X

(no elastic cost since all paths are equally long)

Convenient for numerical study:

Simple, fast recursion relation

Z(X ) =e PV Z(X —1,t—1)+ Z(X +1,t—1)]
Z(X,0) =dx.0




Directed paths

e.g. directed polymer on a lattice:

Z(X,t) = Z o B o< < Vi)
m:x(0)=0—xz(t)=X

(no elastic cost since all paths are equally long)

Convenient for numerical study:

Simple, fast recursion relation

Z(X ) =e PV Z(X —1,t—1)+ Z(X +1,t—1)]
Z(X,0) =dx.0

T =0 limit looks like in TASEP:
Ermin(X,t) = V(X) 4+ min [Emin(X — 1, — 1), Epin(X 4+ 1, — 1)]



Directed paths

e.g. directed polymer on a lattice:

Z(X,t) = Z o B o< < Vi)
m:x(0)=0—xz(t)=X

(no elastic cost since all paths are equally long)

Convenient for numerical study:

Simple, fast recursion relation

Z(X ) =e PV Z(X —1,t—1)+ Z(X +1,t—1)]
Z(X,0) =dx.0

No disorder: simple 1d random walk!



Directed paths

e.g. directed polymer on a lattice:

Z(X,t) = Z o B o< < Vi)
m:x(0)=0—xz(t)=X

(no elastic cost since all paths are equally long)

Convenient for numerical study:

Simple, fast recursion relation

Z(X ) =e PV Z(X —1,t—1)+ Z(X +1,t—1)]
Z(X,0) =dx.0

With disorder: Solve for Z in only time O(t2): not exponential in t!
— Computationally easy, not NP-hard — yet: properties of glasses arise!



Directed paths

e.g. directed polymer on a lattice:

Z(X,t) = Z o B o< < Vi)
m:x(0)=0—xz(t)=X

(no elastic cost since all paths are equally long)

Convenient for numerical study:

Simple, fast recursion relation

Z(X ) =e PV Z(X —1,t—1)+ Z(X +1,t—1)]
Z(X,0) =dx.0

With disorder: Solve for Z in only time O(t2): not exponential in t!
— Computationally easy, not NP-hard — yet: properties of glasses arise!
What can we do analytically?



Sums over paths: effect of disorder

Simplest case: 1d path of length N — a single term in the sum, with independent V..

The simple answer illustrates the difficulties arising from disorder:

N
Z:HQ—ﬁVi F:_IH(Z) :ZVL
1=1 '

What can we say about the distribution of Z, or the free energy p(F)?



Sums over paths: effect of disorder

Simplest case: 1d path of length N — a single term in the sum, with independent V..

The simple answer illustrates the difficulties arising from disorder:

N
Z:HQ_ﬁvi F:—ID(BZ) :ZVi
1=1 1=1

What can we say about the distribution of Z, or the free energy p(F)?

p(Z2)=0(Z—-Z({V})), (...) = disorder average



The replica trick

ldea: compute /" tfor né&€N n copies or “replica”

Why? Integer powers of Z can be averaged easily and give a non-disordered
system — but now of n copies.

N In(Z N
Z:He_ﬁv’i F:—n():ZV};
i=1 g =1
N
Z=[[e=cP"
i=1 \ m’th cumulant
- N /N <. nm /
7n — He—nﬁ‘/z‘ — e "PVi = exp [N Z —,(—5)m<vm>c
i=1 m=1 """




Cumulants

Connected correlators or cumulants <x">, of a random variable:

e~ the = /e_ikxp(a:)dac =: exp Z

n>0

—~
&
~—
I
—~
)
N ~—"
(@)

(@)
S
&K
~~—"
N

)
=
]
)

The full correlator is the sum over partitions
of the product of connected correlators

(—uk)"
n!

(") e




Cumulants

Connected correlators or cumulants <x">, of a random variable:

e—thr = /e_ik:’”p(aj)dw —: €XP Z (_Zk)n <$n>c

n>0

(@) = (@) (z)e = (x)
(2%) = (2%)c + (2)2 (2%)e = (%) — (2)”
(27) = (%) + (%) c(x)e + (2)2 (2%)e = (2°) — 3(z”)(z) + 2(z)
The full correlator is the sum over partitions Connected correlator = full correlator

of the product of connected correlators minus all connected components



Cumulants - Gaussians

Important case: Gaussian random variables 6—%
P\T) =
() V2o
- z—)” 2 2
e—thr — /e—zkch(x)daj _ e—ikm € 2o dr — e—zk,u— k 5
2O
<25’3> - “’2 Gaussians have only first
’ (%) =0 and second cumulants!
("7, =0



Cumulants - Gaussians

Important case: Gaussian random variables — multidimensional Gaussian

kvk’u<wi,u>c

e—ik’/:c,, _ /e—zk x”p(il?)ddI _ e—zk (z,)— 5

(Einstein convention: sum over indices)

Only cumulants are: means <x >
and Gaussian covariance matrix
<XnXm>c



The replica trick

N
[ = H e PV
i=1

N

00

_ — N n™

AL | | e—nBVi — e—nBV:i  — exp g S

. m
1=1 m=1

N
:Zvi

V™)e



The replica trick

N N
In(Z)
7 = F=- =)V
L™ =
N
7n — He nBVi — e nBV = exp [N Z 6)m<vm>c
1=1

m=1
<>  Central limit theorem for F ?? (F Gaussian <= Z log-normal) f




The replica trick

N N
In(Z)
7 = e~ = = Vi
1 ; Z
N
7n — He nBVi — e nBV = exp [N Z 5)m<vm>c
1=1

m=1
<>  Central limit theorem for F ?? (F Gaussian <= Z log-normal) f

If F were simply Gaussian, higher than second cumulants (m>2) would be absent!



The replica trick

N In(7 N
/= He F=— n(2) = ZVZ-
1=1 B 1=1
N
Zn=[[emovi=c BV = exp [N Z (=8)"(V™)e
1 =1

m=1
<>  Central limit theorem for F ?? (F Gaussian <= Z log-normal) f
If F were simply Gaussian, higher than second cumulants (m>2) would be absent!

* Indeed: good approximation for small moments n!/ (senses bulk of P(Z))
 But: large moments Z" are dominated by (non-universal) tails of P(Z)
(< rare disorder configurations!)
 These tails and the too rapid growth (faster than n!) of high moments Z" make the
inference of P(Z) from its integer moments impossible (solution is not unique)



The replica trick

N

N
Z:HG_BVZ' F—ln(BZ)—ZlV@
1=1 1=

N O
7n — He—nBVi — e—nBVi = exp [N Z m(_B)m<vm>c

1=1 m=1
Up to which n is the “log normal” approximation good? f

7" & exp [N <—n/3<V> — %252<v2>c + )]

<>




The replica trick

3 n(Z) &
1=1 p i=1
_ N N 0 nm
7n — ge—nﬂvi — e Vi =exp [N Z W(_B)m<vm>c

m=1
Up to which n is the “log normal” approximation good? f

77 ~ exp [N <—n/3<V> + %252<V2>C " >]

* <V2>C .
n<n ~T V) Higher cumulants can be neglected.

<>




<>

The replica trick

3 n(Z) &
1=1 p i=1
_ N N 0 nm
7n — ge—nﬁvi — e Vi =exp [N Z W(_B)m<vm>c

m=1
Up to which n is the “log normal” approximation good? f

77 ~ exp [N (—n/3<V> + %252<V2>C " >]

* <V2>C .
n<n ~T V) Higher cumulants can be neglected.

BUT: always breaks down, even for n=1, for T’ S T =




The replica trick

N N
7 _ He F:—IH(BZ):ZV;;

1 1=1

1=
N

7n — He nBVi — e nBV = exp [N Z 5)m<vm>c

1=1

m=1
Up to which n is the “log normal” approximation good? f

7" & exp [N <—n5<v> — %252<V2>c + )]

Need a way to extrapolate moments to smalln — 0!

|deally: Disorder-average the (typical) free energy, T — Iim Z" —1

<>

not the partition function, which is dominated by rare disorder! n—s0 n



Self-averaging
- Z™ —1

Note: F = lim

n—0 n
In contrast to Z, the free energy F is expected to be self-averaging:

For a large system, F is essentially a sum of many mutually independent
subvolumes, each of which contains its own disorder realization. The total free
energy of a thermodynamically large system (N, V — oo) thus automatically
averages over disorder realizations, and one expects

F/N "2 F/N



Self-averaging

L n_ 1
Note: F = lim
n—0 n

In contrast to Z, the free energy F is expected to be self-averaging:

For a large system, F is essentially a sum of many mutually independent
subvolumes, each of which contains its own disorder realization. The total free
energy of a thermodynamically large system (N, V — oo) thus automatically
averages over disorder realizations, and one expects

N—00 =—
F/N "= F/N
The derivatives wrt thermodynamic variables then yield global thermodynamic
responses (specific heat, susceptibilities, etc).



Self-averaging

Note: F — lim "

n—0 n
In contrast to Z, the free energy F is expected to be self-averaging:

For a large system, F is essentially a sum of many mutually independent
subvolumes, each of which contains its own disorder realization. The total free
energy of a thermodynamically large system (N, V — oo) thus automatically
averages over disorder realizations, and one expects

N—00 55

F/N =" F/N

The derivatives wrt thermodynamic variables then yield global thermodynamic
responses (specific heat, susceptibilities, etc).

Difficulty: F is hard to compute. - But often one already gains insight by studying the
integer cumulants of Z and try to extrapolate to small n. - Now apply to the DPRM!



Directed polymers: continuum

Z(X.t) = / do Z (0, 0) / ((:):x Da(7) exp !—% /0 Cdr (Z—f)Q— /O t dTV(x(T),T)]



Directed polymers: continuum

Z(X,t) = / do Z (0, 0) / ((:_x Da(7) exp [—% /0 Cdr (%)2— /O t dTV(x(T),T)]

with Gaussian disorder: V(gy7 t) =0

Covariance: V(z,t)V(z',t') = K(z —2')o(t — t')

Spatial correlations are usually of finite range €
due to the physical extent (thickness) of the line




Directed polymers: continuum

Z(X,t) = / do Z (0, 0) / ((:_x Da(7) exp [—; / Cdr (Zf) /O t dTV(x(T),T)]

with Gaussian disorder: V(gy7 t) =0

Covariance: V(z,t)V(z',t') = K(z —2')o(t — ')

Study fluctuations Z(X1,0)Z(Xa,t).. Z( X, t) =

T [
exp l Z/ i (da:m> %/Ot deT’mg_l V(2 (7), T)V (X (T’),T’)]

Tm()=Xm 1

-/ T o0 Z (0. 0) / [ D2u(r)

m=1 Zm (0)=Tmo m=1

exp [Z/ dT(dmm> /dT Z K (2 (7) — o (7 ))]



Directed polymers: continuum

Back to a Schrodinger-like equation:

w(Xla 7Xn7t) = Z(Xlat)Z(X27t)Z(Xn7t)
Y = —Hy

”H:—%Z@?{—m—% Y K(Xp— Xo)
m=1

m,m’=1



Directed polymers: continuum

Back to a Schrodinger-like equation:

w(Xla 7Xn7t) = Z(Xlat)Z(X27t)Z(Xn7t)

Y = —Hy
1> 1 n Irrelevant constant
1 — = Z ag(m -5 Z K(Xm _ Xm’) energy per polymer
m=1 m,m’=1

Attractive two-body potential!



Directed polymers: continuum

Back to a Schrodinger-like equation:

w(Xla 7Xn7t) = Z(Xlat)Z(X27t)Z(Xn7t)

(9t¢ — —Hw
1> 1 n Irrelevant constant
Y — _5 Z o2 - 5 Z K(Xm _ Xm’) energy per polymer
m=1 m,m’=1

Attractive two-body potential!

Disorder has disappeared. BUT: a given polymer still feels where the low disorder potentials
were: It is where one preferentially finds other polymer copies!
The disorder average indeed produces an attraction between replica.



Directed polymers: continuum

Back to a Schrodinger-like equation:

w(Xla 7Xn7t) = Z(Xlat)Z(X27t)Z(Xn7t)

Y = —Hy
H——lzn:aQ Ly K(Xpm — Xpr)
- 2m:1 o 2mm’:1 " "
1 n , 1 n
:§ZﬁXm_§ Z K(Xm Xm)_ K<0)
m=1 m#Fm’=1

“Solution™
(X1, .., X, 0) = Z(X1,0)Z(X5,0)...Z(X,,,0) := g

(X1, oy Xy t) = (X[e™ " gpo) = > (Xabie) (thrc|e ™+ |qpg)

k



Directed polymers: continuum

Back to a Schrodinger-like equation:

w(Xla 7Xn7t) = Z(Xlat)Z(X27t)Z(Xn7t)

Opp = —Hy
=t Y 2 1 Y K(X, — Xo)
N 2m:1 o 2mm:1 " "

m=1 m#£m/=1
“Solution™:
w(Xl, ...,Xn,O) = Z(Xl,O)Z(XQ,O)...Z(Xn,O) = g
t— 00

D(X1, oy Xy t) = (XM aho) = (X|has) (has|e Fes™ag)



Directed polymers: continuum

Long propagation: Ground state of the n-polymer problem?

H’:%iaim—% znj K(Xm — Xm)

m=1 m#m/’=1

Ygs 7

Consider short range correlations, K(x) = gé(x)

—> Lieb-Liniger repulsive 1d Bose gas (as probed in cold atoms!).

* Solvable exactly by Bethe ansatz (full eigenstate spectrum)



Directed polymers: continuum

Long propagation: Ground state of the n-polymer problem?

H’:%iaﬁm—% znj K(Xm — Xm)

m=1 m#=m/’/=1

Ygs 7

Consider short range correlations, K(x) = gé(x)

—> Lieb-Liniger repulsive 1d Bose gas (as probed in cold atoms!).

* Solvable exactly by Bethe ansatz (full eigenstate spectrum)

 Ground state: single bound state of all n particles (Bethe ansatz string) with wavefunction
2
Ya(Xis o Xn) = exp [=5 3 | Xon = X s — _%(n:% _ )
m=Z£m/’



Directed polymers: continuum

H = % > 0%, —% Y K(Xp— Xm)
m=1 m#m/=1

Scaling analysis of a bound state of n particles, of size R :

2

n n

Foa(n, R) ~ — — g
1
Rmin ~
gn

Ecs ~ Epa(n, Rypin) ~ —g°n’



Directed polymers: continuum

1 « 1 <
I = 2 = . ,
H =2 0%, -5 2 KXn—Xu)
m=1 m#*m’=1
Scaling analysis of a bound state of n particles, of size R :

n n2

Ebd(’n, R) ~/ ﬁ — E
1

Rmin ~

gn
Egs ~ Epda(n, Bypin) ~ —g°n°> <2 _



Directed polymers: continuum

H = % > 0%, —% Y K(Xp— Xm)
m=1 m#m/=1

Scaling analysis of a bound state of n particles, of size R :

n 7?,2

Ebd(n, R) ~/ ﬁ — E
1

Rmin ~

g’)’L
Egs ~ Epda(n, Bypin) ~ —g°n°> <2 _

« Rationalizes the n3scaling
« Breakdown of delta function approximation forn > n*~ 1/g€ €= Rpin(n*) ~ ¢
 Beyond: non-universal behavior depending on extreme values of local potential



Directed polymers: continuum

How to infer something about p(Z) from the moments at n< n*?



Directed polymers: continuum

k

2 ? C
Zn(X,t) x exp(Cnt + g—4t(n3 —n)) = exp {zk: %(—BF)"C




Directed polymers: continuum

n 92 3 ! nk [
Z"(X,t) < exp(Cnt + 2—4t(n —n)) = exp Z ﬁ(—BF)

Naively seems to suggest that

(—BF)3 ~t  §F ~t1/3




Directed polymers: continuum

0 k

2 C
Zn(X,t) x exp(Cnt + g—4t(n3 —n)) = exp {; %(—BF)"C

Naively seems to suggest that
(—BF)3 ~t  §F ~t1/3
But also, that (—ﬁF)QC —

Which cannot be!




Directed polymers: continuum

Zn(X,t) x exp(Cnt + g—zt(ng —n)) = exp {; Z—T(—BF)"CC
Naively seems to suggest that T
(—BF)3 /~t  §F ~ /3
But also, that ( ﬁF)QC — 0
Which cannot be'//Resoution:
t — oo at fixed n <> Expansion around \n — 0, at fixed t

These limits do not commute!



Directed polymers: continuum

n 92 3 ! nk [
Z"(X,t) < exp(Cnt + 2—4t(n —n)) = exp Z F(_ﬁF)

Naively seems to suggest that
(—BF)3 ~t  §F ~t1/3
But also, that (—ﬁF)QC — 0

Which cannot be!

In Z"(t) = Cnt 4 o(nt?)

Assume that the singular part of In(Z") as t = oo,
n — 0 are given by a scaling function ¢ (nt?)




Directed polymers: continuum

7K, oc exp(Crnt + - t(n® — ) L exp {Z %T(—%?F)’“C
k

24

Naively seems to suggest that
(—BF)3 ~t  §F ~t1/3
But also, that (—ﬁF)QC — 0

Which cannot be!

InZ"(t) = Cnt + o(nt?) e Extensivity ~ t !

Assume that the singular part of In(Z" ast — o0, = Cnt+C'n"%, t—
n — 0 are given by a scaling function ¢ (nt?)



Directed polymers: continuum

n 92 3 ! nk [
Z"(X,t) < exp(Cnt + 2—4t(n —n)) = exp Z ﬁ(—BF)

Naively seems to suggest that
(—BF)3 ~t  §F ~t1/3
But also, that (—ﬁF)QC — 0

Which cannot be!

In Zn(t) = Cnt + p(nt?) - Extensivity ~ t !
Assume that the singular part of In(Z" ast — o0, = Cnt+C'n"%, t—
n — 0 are given by a scaling function go(ntg) — Cnt + ant® + ax(nt?)? + ..., n—0



Directed polymers: continuum

2 k
" 9 403 i o ¢
Zn(X,t) x exp(Cnt + 2—4t(n —n)) = exp {; x (—BF)F
Naively seems to suggest that
C
(—BF)3 ~t  SFWt'/?

1

_ B2 — -

But also, that ( @F) — 0 -

Which cannot be! Resolution:

InZn(t) = Cnt+ ¢
Assume that the singular part of In(Z" ast — o0, = Cnt+C'n"%, t— o

n — 0 are given by a scaling function go(ntg) — Cnt 4+ arnt? + ax(nt?)? + ...,

n—0



Directed polymers: continuum

k
ZCX0) o exp(Cnt + Lt(n? = m)) & exp {Z ST
k

24

Naively seems to suggest that
C
(—BF)3 ~t  §F
But also, that (—ﬁF)QC — 0

Which cannot be! Resolution:

41/3

p 1
— 1/3
3 OF ~ tY/

InZn(t) = Cnt+ ¢
Assume that the singular part of In(Z" ast = oo, = Cnt+C'n*%/ t =
n — 0 are given by a scaling function go(ntg) — Cnt + ant? + ax(nt?)? + ..., n—0



Replica approach

Wl -

 Replica approach yields independently the KPZ/DPRM energy exponent 6 =



Replica approach

 Replica approach yields independently the KPZ/DPRM energy exponent § = — !

Wl =

« Afull Bethe ansatz computation of ¥ (X1, ..., X5,0) = Z(X1,0)Z(X32,0)...2(X5, 0) := tho
(X1, oy Xo t) = (X |ho) =Y (X ehi) (thr e+ )

k
with appropriate analytic continuation to n = 0 has been achieved (Calabrese+Le Doussal)

Again: free energy fluctuations are governed by Tracy Widom distribution

(GUE for point to point DPRM; GOE for line to point)



Replica approach

 Replica approach yields independently the KPZ/DPRM energy exponent § = — !

Wl =

« Afull Bethe ansatz computation of ¥ (X1, ..., X5,0) = Z(X1,0)Z(X32,0)...2(X5, 0) := tho
(X1, oy Xo t) = (X |ho) =Y (X ehi) (thr e+ )

k
with appropriate analytic continuation to n = 0 has been achieved (Calabrese+Le Doussal)

Again: free energy fluctuations are governed by Tracy Widom distribution
(GUE for point to point DPRM; GOE for line to point)

 Beyond the above, the replica approach allows to analyze finite range correlators, T effects etc.



Exercises

Replica approach to DPRM

» Check the ground state wavefunction of the n-polymer problem and compute its
energy.

» Consider D=2 transverse directions instead of 1. Do you expect a bound state?
Repeat the scaling analysis for this case. Does it allow to conclude anything
about the scaling of energy with n and thus for the energy exponent 87



Exercises

Directed polymer on a Cayley tree

 Consider a Cayley tree with branching number k

 Apolymer goes from any leaf (bottom to the top), its energy being the sum of site
energies E; encountered along the path, E = X;cpqen Ei

 Derive a recursion equation for the partition function (at finite T), as you progress from
the leaves towards the root.

» Derive a recursion for the zero temperature limit (minimal energy configuration)!



Exercises

« At generation t from the leaves define the partition function Z(t) and the quantity

Gi(x) = exp(—e~PrZ(t))

 Show that the above recursion implies that

Gen(@) = [ aVo(V)[Giula + V)1

This can be shown to have travelling wave solution of the form w(x -ct).
Determining ¢ amounts to computing the free energy density.



