The Kardar-Parisi-Zhang equation and universality class II

Some exactly solvable models in the KPZ universality class

More interesting mappings

Relation to random matrices

Replica approach

Non-linear growth as a stochastic, off-equilibrium phenomenon

with

- Self-similarity / scale invariance
- Non-trivial critical exponents
- Universality
- Exactly solvable models: exact exponents AND exact scaling functions!

Interesting mappings: KPZ growth equation

$$\frac{\partial}{\partial t}h(\mathbf{x},t) = v_0 + v\nabla^2 h + \frac{\lambda}{2}(\nabla h)^2 + \eta(\mathbf{x},t)$$

Burger's equation (fluid dynamics)
$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = \nu \nabla^2 \mathbf{v} - \lambda \nabla \eta$$

Interesting mappings: KPZ growth equation

$$\frac{\partial}{\partial t}h(\mathbf{x},t) = v_0 + v\nabla^2 h + \frac{\lambda}{2}(\nabla h)^2 + \eta(\mathbf{x},t)$$

Burger's equation (fluid dynamics)

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = \nu \nabla^2 \mathbf{v} - \lambda \nabla \eta$$

Stochastic heat equation

$$\partial_t Z(x,t) = \nu \partial_x^2 Z(x,t) + \frac{\lambda}{2\nu} Z(x,t) \eta(x,t)$$

Interesting mappings: KPZ growth equation

$$\frac{\partial}{\partial t}h(\mathbf{x},t) = v_0 + v\nabla^2 h + \frac{\lambda}{2}(\nabla h)^2 + \eta(\mathbf{x},t)$$

Burger's equation (fluid dynamics)
$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = \nu \nabla^2 \mathbf{v} - \lambda \nabla \eta$$

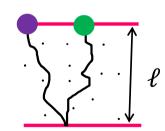
Stochastic heat equation

$$\partial_t Z(x,t) = \nu \partial_x^2 Z(x,t) + \frac{\lambda}{2\nu} Z(x,t) \eta(x,t)$$

Directed polymer in random media

$$Z(x,t) = \int_{(u(0)=0)}^{(u(t)=x)} \mathcal{D}[u(t)] \exp\left[-\frac{1}{T} \left(\frac{1}{2} \int_0^t \dot{u}^2 dt - \int_0^t \lambda \eta(u(t),t)\right)\right]$$

$$\equiv \int_{(u(0)=0)}^{(u(t)=x)} \mathcal{D}[u(t)] \exp\left[-\frac{1}{T} \left(E_{\text{el}} + E_{\text{pot}}\right)\right]$$



Scaling of directed polymers in 1+1 dimension

Free energy fluctuations

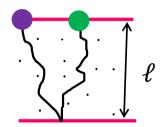
$$\delta F \sim \ell^{\theta=1/3}$$

Lateral displacements: "roughness"

$$x \sim \ell^{\zeta = 2/3}$$

Statistical tilt symmetry:

$$\theta = 2\zeta - 1$$



Both reflect the dominance of disorder!

Scaling of directed polymers in 1+1 dimension

Free energy fluctuations

$$\delta F \sim \ell^{\theta=1/3}$$

 ℓ

Lateral displacements: "roughness"

$$x \sim \ell^{\zeta = 2/3}$$

Statistical tilt symmetry:

$$\theta = 2\zeta - 1$$

Notable aspects:

Rougher than a random walk.
 Disorder dominates entropy!

$$\zeta > 1/2$$

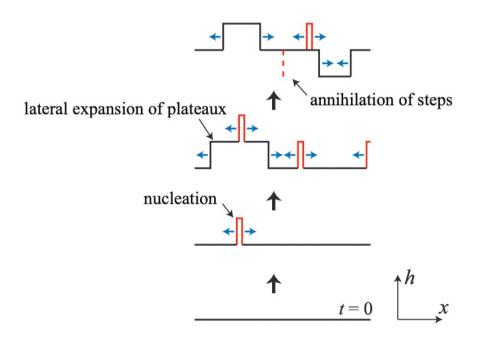
2. Free energy fluctuates less than a random sum!

$$\theta < 1/2$$

Exactly solvable models and a few more interesting mappings

Discrete height : $h \in \mathbf{N}$

Continuum in space *x* and time *t*



- 3. Plateaux merge on meeting
- 2. Nuclei spread with speed v = 1 to both sides
- 1. Random nucleation events (x_n,t_n) , with density $\rho \, dxdt$ $(\rho=1)$ $h(x_n, t_n) \rightarrow h(x_n, t_n) + 1$

"Circular model"

$$\langle h(x,t)\rangle = \sqrt{2(t^2 - x^2)}$$

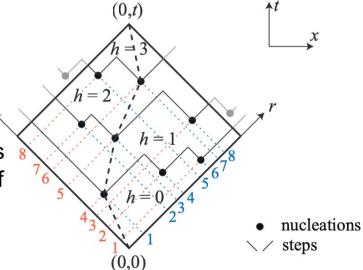
Nucleation only in the regime

$$|x| \le t$$

of nuclei N_{nuc} = Poiss($t^2/2$)

h(0,t) = #height steps = maximal number of nuclei on forward pointing <u>"world line"</u>

Like DPRM with point defects!



"Circular model"

$$\langle h(x,t)\rangle = \sqrt{2(t^2 - x^2)}$$

Nucleation only in the regime

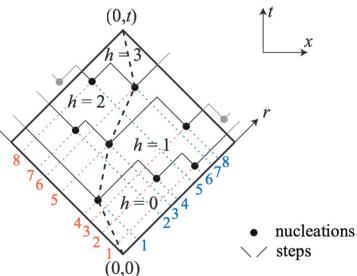
$$|x| \le t$$

Height profile

of nuclei N_{nuc} = Poiss($t^2/2$)

h(0,t) = #height steps = maximal number of nuclei on forward pointing <u>"world line"</u>

Like DPRM with point defects!



Nuclei define a random permutation!

Ulam's problem:

Maximal increasing subsequence of the permutation?

(0,t)

(0,0)

h = 1

"Circular model"

$$\langle h(x,t)\rangle = \sqrt{2(t^2 - x^2)}$$

Nucleation only in the regime

$$|x| \le t$$

Height profile

of nuclei N_{nuc} = Poiss($t^2/2$)

h(0,t) = #height steps = maximal number of nuclei on forward pointing <u>"world line"</u>

Like DPRM with point defects!

Exact solution via combinatorics! (Baik, Deift Johansson '99)

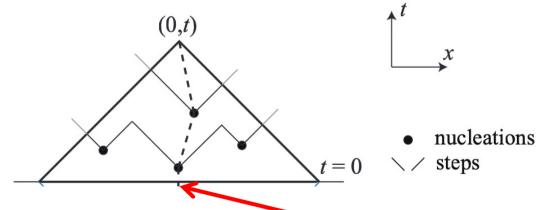
$$h(0,t) = \sqrt{2}t + (t/\sqrt{2})^{1/3}\chi_{\text{TW},2}$$

Height fluctuations/length of maximal increasing subsequence are distributed according to Tracy-Widom distribution, like λ_{max} of random (Gaussian

unitary GUE) matrix! WHY??

"Flat model": no restriction on x

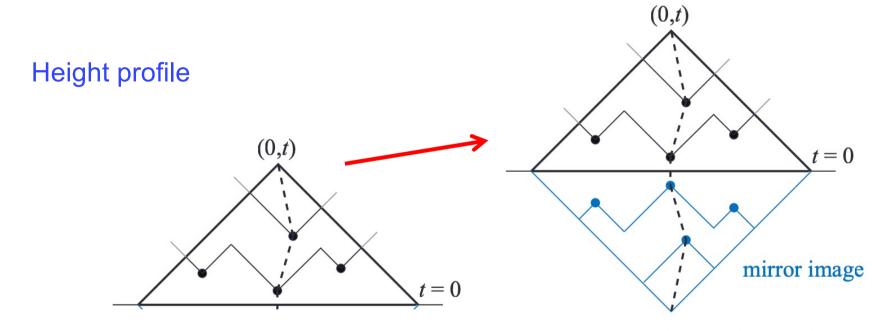
Height profile



Note: Only nucleations in backward light cone of (x,t) influence h(x,t)

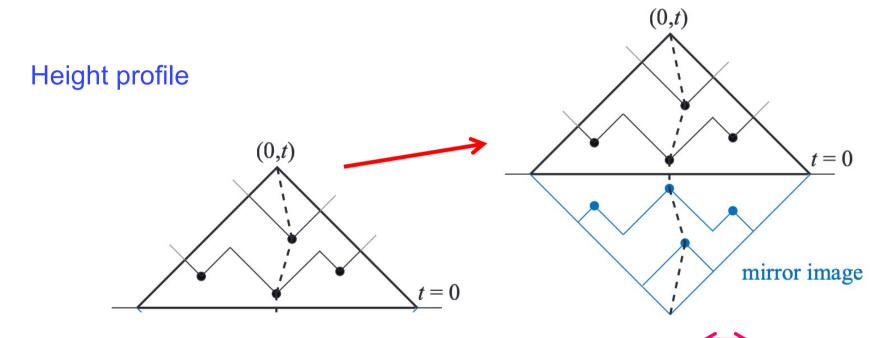
Path maximizing number of nuclei may start at any x at t=0 (line-to-point).

"Flat model": no restriction on x



Path maximizing number of nuclei may start at any x at t=0 (line-to-point). Point-to-point from time-reversed mirror image!

"Flat model": no restriction on x

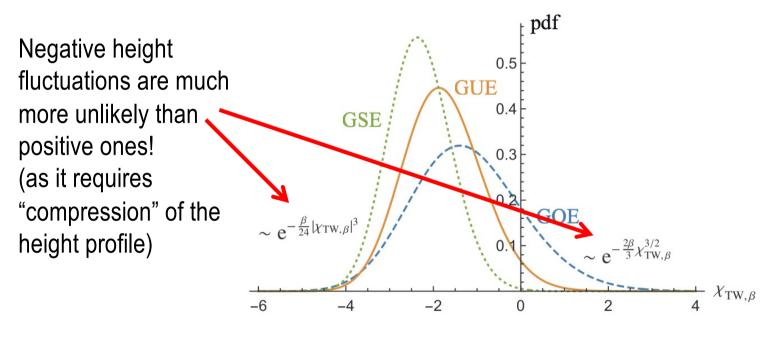


Path maximizing number of nuclei may start at any x at t=0 (line-to-point). Point-to-point from time-reversed mirror image!

 $\delta h(0,t)$ distributed like λ_{max} of TRS matrix (GOE)!

Tracy-Widom distribution

Stretched exponential decays, asymmetric!



Circular model: $h(0,t) = \sqrt{2}t + (t/\sqrt{2})^{1/3}\chi_{\mathrm{TW}}$ (GUE)

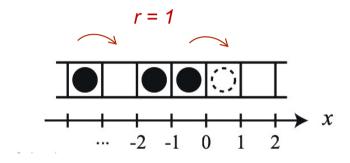
Flat surface: $2h(0, t) \simeq \sqrt{2}(2t) + (2t/\sqrt{2})^{1/3} \chi_{\text{TW (GOE)}}$

Exactly solvable growth model what about transport/hydrodynamics?

Exactly solvable non-linear transport processes

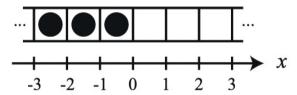
A model in the spirit of Burgers equation (fluid dynamics)

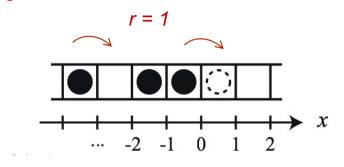
But: discrete in space, with an exact solution



Hardcore particles jump to right at rate r = 1 if place is empty

Initially, e.g.:

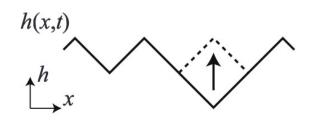




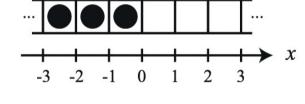
Hardcore particles jump to right at rate r = 1 if place is empty

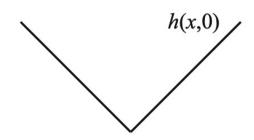
Initially, e.g.:

Relation to growth models:

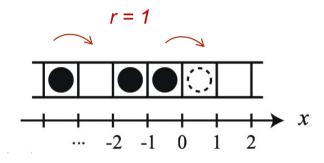


$$lacksquare$$
 $=$ \setminus





h(0,t) = # of particles that have passed 0 until time t (integrated current).



Map to a directed polymer:

2

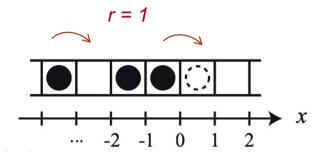
Particle No.

Define $t_{i,j} := \text{time}$, when particle i makes jump j $\tau_{i;j} := \text{time for particle } i \text{ to make jump } j \text{ once the next site is free}$ $\Rightarrow \text{Random variable:} \quad p(\tau_{i;j}) = e^{-\tau_{i;j}}$

Two conditions for jump: i) particle *i-1* has jumped *j* times; ii) particle *i* has jumped *j-1* times

$$t_{i,j} = \max(t_{i,j-1}, t_{i-1,j}) + \tau_{i,j}$$

3

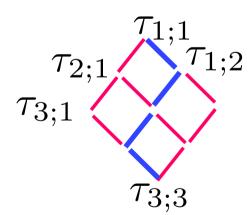


Map to a directed polymer:

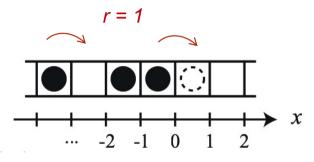
2

3

Particle No.



$$t_{i,j} = \max(t_{i,j-1}, t_{i-1,j}) + \tau_{i,j}$$

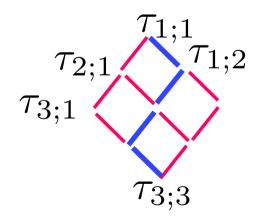


Map to a directed polymer:

3

2

Particle No.



Time T_N when the N'th particle has crossed 0:

$$T_N \equiv t_{N,N} = \max_{dir.\ paths\ p} \left(\sum_{(i;j)\in p} \tau_{i;j}\right)$$

 \leftrightarrow minimizing the random "energy" $(-\sum \tau)$! Special exactly solvable DPRM problem on a lattice!

$$t_{i,j} = \max(t_{i,j-1}, t_{i-1,j}) + \tau_{i,j}$$

Exact solution by Johansson (2010)

$$\operatorname{Prob}[N(t) \geq N] = \operatorname{Prob}[T_N \leq t] \propto \int_{[0,t]^N} \prod_{i=1}^N \mathrm{d}x_i \prod_{i < j} (x_i - x_j)^2 \prod_i \mathrm{e}^{-x_i}.$$

N(t): = total current through 0 until time t = h(0,t) in growth picture

Exact solution by Johansson (2010)

$$\operatorname{Prob}[N(t) \ge N] = \operatorname{Prob}[T_N \le t] \propto \int_{[0,t]^N} \prod_{i=1}^N \mathrm{d}x_i \prod_{i < j} (x_i - x_j)^2 \prod_i \mathrm{e}^{-x_i}.$$

N(t): = total current through 0 until time t = h(0,t) in growth picture

Amazingly similar to distribution for largest eigenvalue of a GUE random matrix (cf later lectures):

$$\operatorname{Prob}[\lambda_{\max} \leq x] = \operatorname{Prob}[\lambda_1, \cdots, \lambda_N \leq x] = \frac{1}{Z} \int_{(-\infty, x]^N} \prod_i d\lambda_i \prod_{i < j} |\lambda_i - \lambda_j|^{\beta} \prod_i e^{-\frac{\beta}{2}\lambda_i^2} \qquad \beta = 2$$

Exact solution by Johansson (2010)

$$\operatorname{Prob}[N(t) \geq N] = \operatorname{Prob}[T_N \leq t] \propto \int_{[0,t]^N} \prod_{i=1}^N \mathrm{d}x_i \prod_{i < j} (x_i - x_j)^2 \prod_i \mathrm{e}^{-x_i}.$$

$$\mathsf{N}(t) := \mathsf{total} \ \mathsf{current} \ \mathsf{through} \ \mathsf{0} \ \mathsf{until} \ \mathsf{time} \ \mathsf{t} \ = \mathsf{h}(\mathsf{0},\mathsf{t}) \ \mathsf{in} \ \mathsf{growth} \ \mathsf{picture}$$
 Difference turns out irrelevant

Amazingly similar to distribution for largest eigenvalue of a GUE random matrix (cf later lectures):

$$\operatorname{Prob}[\lambda_{\max} \leq x] = \operatorname{Prob}[\lambda_1, \cdots, \lambda_N \leq x] = \frac{1}{Z} \int_{(-\infty, x]^N} \prod_i d\lambda_i \prod_{i < j} |\lambda_i - \lambda_j|^{\beta} \prod_i e^{-\frac{\beta}{2}\lambda_i^2} \qquad \beta = 2$$

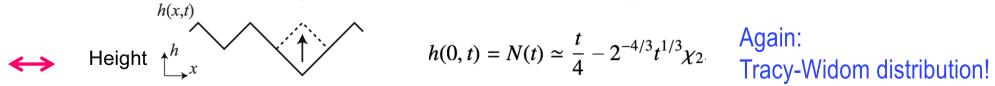
Exact solution by Johansson (2010)

$$\operatorname{Prob}[N(t) \ge N] = \operatorname{Prob}[T_N \le t] \propto \int_{[0,t]^N} \prod_{i=1}^N \mathrm{d}x_i \prod_{i < j} (x_i - x_j)^2 \prod_i \mathrm{e}^{-x_i}.$$

N(t): = total current through 0 until time t = h(0,t) in growth picture

Amazingly similar to distribution for largest eigenvalue of a GUE random matrix (cf later lectures):

$$\operatorname{Prob}[\lambda_{\max} \leq x] = \operatorname{Prob}[\lambda_1, \cdots, \lambda_N \leq x] = \frac{1}{Z} \int_{(-\infty, x]^N} \prod_i d\lambda_i \prod_{i < j} |\lambda_i - \lambda_j|^{\beta} \prod_i e^{-\frac{\beta}{2}\lambda_i^2} \qquad \beta = 2$$



$$h(0, t) = N(t) \simeq \frac{t}{4} - 2^{-4/3} t^{1/3} \chi_2$$

Testing universality of KPZ

Amazing achievement:

Specific discrete models: off-equilibrium, random processes that have exact solutions!

Like Onsager solution for 2d Ising model – but off equilibrium and stochastic!

Several exact solutions:

- Polynuclear growth model
- Asymmetric exclusion processes
- Replica approach to directed polymers (see below)

All predict

- Height distribution $P\left(\frac{h(x,t)-tv_0}{t^{1/3}}\right)$: Tracy Widom distribution!
 - Two point correlation function $\langle \delta h(x,t) \delta h(x',t') \rangle$ (explicit but complicated)

Strong indication of universality. But: does it also hold for non-solvable systems?

In experiment (or numerics): Determine parameters A and λ :

$$A=rac{D}{2
u}$$
 from measuring heights at constant time:

$$\langle [h(x+\ell,t)-h(x,t)]^2 \rangle \simeq A\ell$$

In experiment (or numerics): Determine parameters A and λ :

$$A=rac{D}{2
u}$$
 from measuring heights at constant time:

$$\langle [h(x+\ell,t)-h(x,t)]^2 \rangle \simeq A\ell,$$

λ : via tilt symmetry

hetry
$$h_{
m new}({f x},t)=h({f x}+\lambda{f s}t,t)+{f s}\cdot{f x}+rac{\lambda}{2}{f s}^2t$$

In experiment (or numerics): Determine parameters A and λ :

$$A = \frac{D}{2\nu}$$
 from measuring heights at constant time:

$$\langle [h(x+\ell,t)-h(x,t)]^2 \rangle \simeq A\ell,$$

 λ : via tilt symmetry

$$h_{
m new}(\mathbf{x},t) = h(\mathbf{x} + \lambda \mathbf{s}t,t) + \mathbf{s} \cdot \mathbf{x} + \frac{\lambda}{2} \mathbf{s}^2 t$$

$$s = \lim_{t \to \infty} \left\langle \frac{\partial h}{\partial x} \right\rangle \quad v_{\infty} = v_{\infty}(s) = \lim_{t \to \infty} \left\langle \frac{\partial h}{\partial t} \right\rangle$$

Finding the appropriate dimensionless coordinates to compare universal feature?

In experiment (or numerics): Determine parameters A and λ :

$$A = \frac{D}{2\nu}$$
 from measuring heights at constant time:

$$\langle [h(x+\ell,t)-h(x,t)]^2\rangle \simeq A\ell,$$

 λ : via tilt symmetry

$$h_{\text{new}}(\mathbf{x},t) = h(\mathbf{x} + \lambda \mathbf{s}t,t) + \mathbf{s} \cdot \mathbf{x} + \frac{\lambda}{2}\mathbf{s}^2t$$

$$s = \lim_{t \to \infty} \left\langle \frac{\partial h}{\partial x} \right\rangle \qquad v_{\infty} = v_{\infty}(s) = \lim_{t \to \infty} \left\langle \frac{\partial h}{\partial t} \right\rangle$$

$$\lambda = \frac{d^2 v_{\infty}(s)}{ds^2} \bigg|_{s=0}$$

Make x and h dimensionless using A, λ , t

Make x and h dimensionless using A, λ , t

Define
$$\Gamma \equiv \frac{1}{2}A^2\lambda$$

Crossover spatial scale at time t: $\xi(t) = 2(\Gamma t)^{2/3}/A$

Rescaled space coordinate $\zeta \equiv \frac{x}{\xi(t)}$

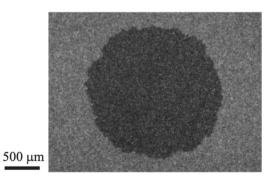
Rescaled height fluctuation $h(x,t) \simeq v_{\infty}t + (\Gamma t)^{1/3}\chi(\zeta,t)$

Measure statistics of χ

Tracy-Widom distribution of height

K. A. Takeuchi, M. Sano (J. Stat. Phys. 2012)

Evidence for Geometry-Dependent Universal Fluctuations of the Kardar-Parisi-Zhang Interfaces in Liquid-Crystal Turbulence



Create interface by laser excitation of the darker phase either

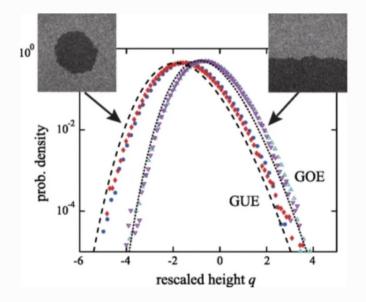
- in a spot → circular surface
- or along a line → flat surface

Tracy-Widom distribution of height

Fig. 8

K. A. Takeuchi, M. Sano (J. Stat. Phys. 2012)

Evidence for Geometry-Dependent Universal Fluctuations of the Kardar-Parisi-Zhang Interfaces in Liquid-Crystal Turbulence



500 μm

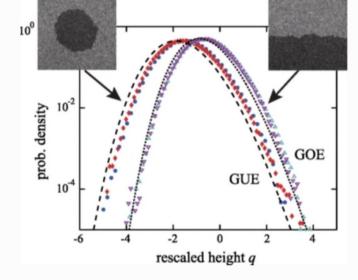
Histogram of the rescaled local height $q=(h-v_\infty t)/(\Gamma t)^{1/3}$ for the circular (solid symbols) and flat (open symbols) interfaces. The blue circles and red diamonds display the histograms for the circular interfaces at t=10 s and 30 s, respectively, while the turquoise up-triangles and purple down-triangles are for the flat interfaces at t=20 s and 60 s, respectively. The dashed and dotted curves show the GUE and GOE TW distributions, respectively, defined by the random variables $\chi_{\rm GUE}$ and $\chi_{\rm GOE}$. (Color figure online)

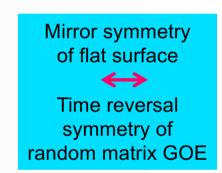
Tracy-Widom distribution of height

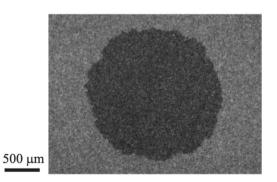
Fig. 8

K. A. Takeuchi, M. Sano (J. Stat. Phys. 2012)

Evidence for Geometry-Dependent Universal Fluctuations of the Kardar-Parisi-Zhang Interfaces in Liquid-Crystal Turbulence







Histogram of the rescaled local height $q=(h-v_\infty t)/(\Gamma t)^{1/3}$ for the circular (solid symbols) and flat (open symbols) interfaces. The blue circles and red diamonds display the histograms for the circular interfaces at t=10 s and 30 s, respectively, while the turquoise up-triangles and purple down-triangles are for the flat interfaces at t=20 s and 60 s, respectively. The dashed and dotted curves show the GUE and GOE TW distributions, respectively, defined by the random variables $\chi_{\rm GUE}$ and $\chi_{\rm GOE}$. (Color figure online)

The directed polymer

A toy glass problem!

An instructive example for the crux of random partition functions

Very interesting fractal-like structure of configuration space:

Minima of to a chose

FIG. 2. A collection of polymers of lowest energy directed along the diagonals of a square lattice with random bonds. Each polymer (crossing 500 bonds) has one end fixed to the apex of the triangle, the other to various points on its base, and finds the optimal path in between.

Minima of polymers from apex to a chosen base line point

Interesting questions?

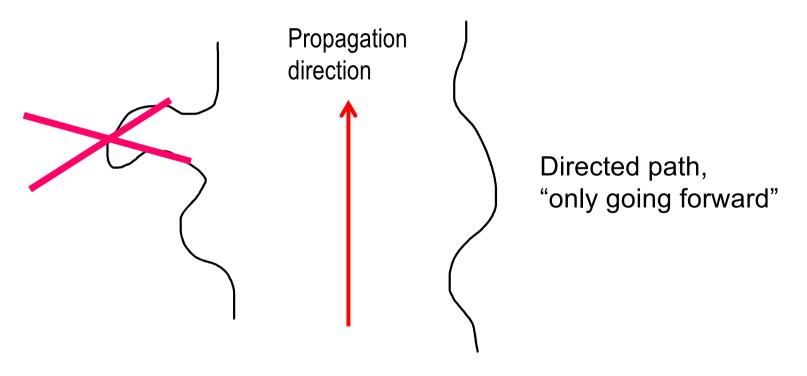
- How does this picture change as we
- change disorder
- apply some force
- How hard is it to pull the polymer along the base line?

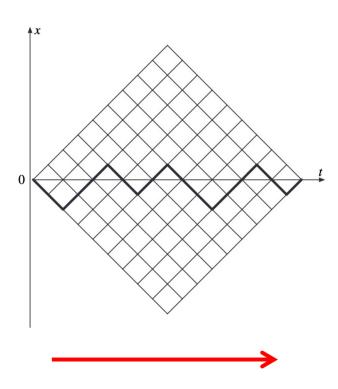
Sums over paths

appear in many circumstances:

- directed polymer (elastic line in disorder potential)
 As model for:
 - Domain wall between two ferromagnetic domains
 - Vortices in supercnductors
- High T expansion, e.g. of a random ferromagnetic Ising model: spin-spin correlator = sum over bonds connecting two points
- Decay of strongly localized quantum wavefunctions (path amplitudes can be negative/complex)
- Light propagation through heterogeneous (turbulent) medium (unitary)

Often, one can neglect overhangs of interfaces, at least at a coarse-grained level

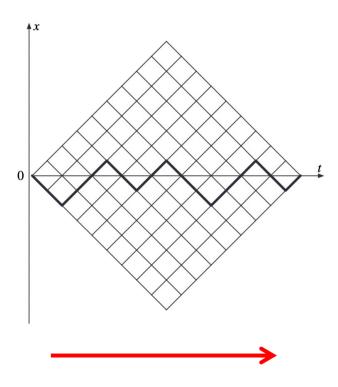




e.g. directed polymer on a lattice:

$$Z(X,t) = \sum_{\pi: x(0) = 0 \to x(t) = X} e^{-\beta \sum_{0 < t' \le t} V(x(t'))}$$

(no elastic cost since all paths are equally long)



e.g. directed polymer on a lattice:

$$Z(X,t) = \sum_{\pi: x(0) = 0 \to x(t) = X} e^{-\beta \sum_{0 < t' \le t} V(x(t'))}$$

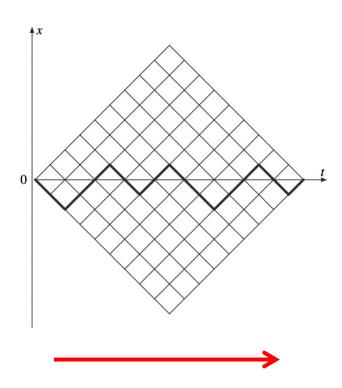
(no elastic cost since all paths are equally long)

Convenient for numerical study:

Simple, fast recursion relation

$$Z(X,t) = e^{-\beta V(X)} \left[Z(X-1,t-1) + Z(X+1,t-1) \right]$$

$$Z(X,0) = \delta_{X,0}$$



e.g. directed polymer on a lattice:

$$Z(X,t) = \sum_{\pi: x(0) = 0 \to x(t) = X} e^{-\beta \sum_{0 < t' \le t} V(x(t'))}$$

(no elastic cost since all paths are equally long)

Convenient for numerical study:

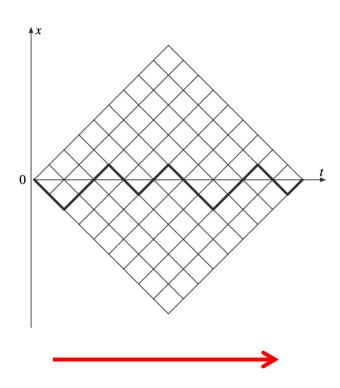
Simple, fast recursion relation

$$Z(X,t) = e^{-\beta V(X)} \left[Z(X-1,t-1) + Z(X+1,t-1) \right]$$

$$Z(X,0) = \delta_{X,0}$$

T = 0 limit looks like in TASEP:

$$E_{min}(X,t) = V(X) + \min [E_{min}(X-1,t-1), E_{min}(X+1,t-1)]$$



e.g. directed polymer on a lattice:

$$Z(X,t) = \sum_{\pi: x(0) = 0 \to x(t) = X} e^{-\beta \sum_{0 < t' \le t} V(x(t'))}$$

(no elastic cost since all paths are equally long)

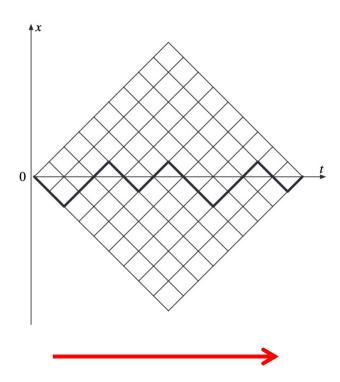
Convenient for numerical study:

Simple, fast recursion relation

$$Z(X,t) = e^{-\beta V(X)} \left[Z(X-1,t-1) + Z(X+1,t-1) \right]$$

$$Z(X,0) = \delta_{X,0}$$

No disorder: simple 1d random walk!



e.g. directed polymer on a lattice:

$$Z(X,t) = \sum_{\pi: x(0) = 0 \to x(t) = X} e^{-\beta \sum_{0 < t' \le t} V(x(t'))}$$

(no elastic cost since all paths are equally long)

Convenient for numerical study:

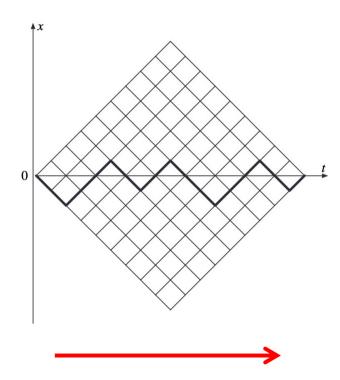
Simple, fast recursion relation

$$Z(X,t) = e^{-\beta V(X)} \left[Z(X-1,t-1) + Z(X+1,t-1) \right]$$

$$Z(X,0) = \delta_{X,0}$$

With disorder: Solve for Z in only time O(t²): not exponential in t!

→ Computationally easy, not NP–hard → yet: properties of glasses arise!



e.g. directed polymer on a lattice:

$$Z(X,t) = \sum_{\pi: x(0) = 0 \to x(t) = X} e^{-\beta \sum_{0 < t' \le t} V(x(t'))}$$

(no elastic cost since all paths are equally long)

Convenient for numerical study:

Simple, fast recursion relation

$$Z(X,t) = e^{-\beta V(X)} \left[Z(X-1,t-1) + Z(X+1,t-1) \right]$$

$$Z(X,0) = \delta_{X,0}$$

With disorder: Solve for Z in only time $O(t^2)$: not exponential in t! \rightarrow Computationally easy, not NP-hard \rightarrow yet: properties of glasses arise! What can we do analytically?

Sums over paths: effect of disorder

Simplest case: 1d path of length N – a single term in the sum, with independent V_i .

The simple answer illustrates the difficulties arising from disorder:

$$Z = \prod_{i=1}^{N} e^{-\beta V_i}$$
 $F = -\frac{\ln(Z)}{\beta} = \sum_{i=1}^{N} V_i$

What can we say about the distribution of Z, or the free energy p(F)?

Sums over paths: effect of disorder

Simplest case: 1d path of length N – a single term in the sum, with independent V_i .

The simple answer illustrates the difficulties arising from disorder:

$$Z = \prod_{i=1}^{N} e^{-\beta V_i}$$
 $F = -\frac{\ln(Z)}{\beta} = \sum_{i=1}^{N} V_i$

What can we say about the distribution of Z, or the free energy p(F)?

$$p(Z) = \overline{\delta(Z - Z(\{V\}))}, \quad \overline{(...)} = \text{disorder average}$$

Idea: compute

for $n \in \mathbf{N}$ n copies or "replica"

Why? Integer powers of Z can be averaged easily and give a non-disordered system – but now of *n* copies.

$$Z = \prod_{i=1}^{N} e^{-\beta V_i} \qquad F = -\frac{\ln(Z)}{\beta} = \sum_{i=1}^{N} V_i$$

$$\overline{Z} = \prod_{i=1}^{N} e^{-\beta V_i} = \overline{e^{-\beta V_i}}^N$$

$$\dots$$

$$\overline{Z^n} = \prod_{i=1}^{N} e^{-n\beta V_i} = \overline{e^{-n\beta V_i}}^N = \exp\left[N \sum_{m=1}^{\infty} \frac{n^m}{m!} (-\beta)^m \langle V^m \rangle_c\right]$$

Cumulants

Connected correlators or cumulants $\langle x^n \rangle_c$ of a random variable:

$$\overline{e^{-ikx}} \equiv \int e^{-ikx} p(x) dx =: \exp \left[\sum_{n \ge 0} \frac{(-ik)^n}{n!} \langle x^n \rangle_c \right]$$

$$\langle x \rangle = \langle x \rangle_c$$

$$\langle x^2 \rangle = \langle x^2 \rangle_c + \langle x \rangle_c^2$$

$$\langle x^3 \rangle = \langle x^3 \rangle_c + 3 \langle x^2 \rangle_c \langle x \rangle_c + \langle x \rangle_c^3$$

The full correlator is the sum over partitions of the product of connected correlators

Cumulants

Connected correlators or cumulants $\langle x^n \rangle_c$ of a random variable:

$$\overline{e^{-ikx}} \equiv \int e^{-ikx} p(x) dx =: \exp \left[\sum_{n \ge 0} \frac{(-ik)^n}{n!} \langle x^n \rangle_c \right]$$

$$\langle x \rangle = \langle x \rangle_c$$

$$\langle x^2 \rangle = \langle x^2 \rangle_c + \langle x \rangle_c^2$$

$$\langle x^3 \rangle = \langle x^3 \rangle_c + 3\langle x^2 \rangle_c \langle x \rangle_c + \langle x \rangle_c^3$$

$$\langle x^3 \rangle_c = \langle x^3 \rangle_c + 3\langle x^2 \rangle_c \langle x \rangle_c + \langle x \rangle_c^3$$

$$\langle x^3 \rangle_c = \langle x^3 \rangle_c - 3\langle x^2 \rangle \langle x \rangle + 2\langle x \rangle^3$$

The full correlator is the sum over partitions of the product of connected correlators

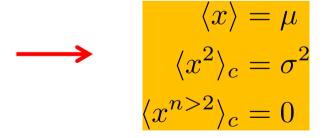
Connected correlator = full correlator minus all connected components

Cumulants - Gaussians

Important case: Gaussian random variables

$$p(x) = \frac{e^{-\frac{(x-\mu)^2}{2\sigma^2}}}{\sqrt{2\pi}\sigma}$$

$$\overline{e^{-ikx}} = \int e^{-ikx} p(x) dx = \int e^{-ikx} \frac{e^{-\frac{(x-\mu)^2}{2\sigma^2}}}{\sqrt{2\pi}\sigma} dx = e^{-ik\mu - \frac{k^2\sigma^2}{2}}$$



Gaussians have only first and second cumulants!

Cumulants - Gaussians

Important case: Gaussian random variables – multidimensional Gaussian

$$\overline{e^{-ik^{\nu}x_{\nu}}} = \int e^{-ik^{\nu}x_{\nu}} p(x) d^d x = e^{-ik^{\nu}\langle x_{\nu}\rangle - \frac{k^{\nu}k^{\mu}\langle x_{\nu}x_{\mu}\rangle_c}{2}}$$

(Einstein convention: sum over indices)

Only cumulants are: means <x_n> and Gaussian covariance matrix

$$\langle x_n x_m \rangle_c$$

$$Z = \prod_{i=1}^{N} e^{-\beta V_i} \qquad F = -\frac{\ln(Z)}{\beta} = \sum_{i=1}^{N} V_i$$

$$\overline{Z^n} = \prod_{i=1}^{N} e^{-n\beta V_i} = \overline{e^{-n\beta V_i}}^N = \exp\left[N \sum_{m=1}^{\infty} \frac{n^m}{m!} (-\beta)^m \langle V^m \rangle_c\right]$$

$$Z = \prod_{i=1}^{N} e^{-\beta V_i} \qquad F = -\frac{\ln(Z)}{\beta} = \sum_{i=1}^{N} V_i$$

$$\overline{Z^n} = \prod_{i=1}^{N} e^{-n\beta V_i} = \overline{e^{-n\beta V_i}}^N = \exp\left[N \sum_{m=1}^{\infty} \frac{n^m}{m!} (-\beta)^m \langle V^m \rangle_c\right]$$

Central limit theorem for F?? (F Gaussian \longleftrightarrow Z log-normal)

$$Z = \prod_{i=1}^{N} e^{-\beta V_i} \qquad F = -\frac{\ln(Z)}{\beta} = \sum_{i=1}^{N} V_i$$

$$\overline{Z^n} = \prod_{i=1}^{N} e^{-n\beta V_i} = \overline{e^{-n\beta V_i}}^N = \exp\left[N \sum_{m=1}^{\infty} \frac{n^m}{m!} (-\beta)^m \langle V^m \rangle_c\right]$$

 \longleftrightarrow Central limit theorem for F?? (F Gaussian \longleftrightarrow Z log-normal)

If F were simply Gaussian, higher than second cumulants (m>2) would be absent!

$$Z = \prod_{i=1}^{N} e^{-\beta V_i} \qquad F = -\frac{\ln(Z)}{\beta} = \sum_{i=1}^{N} V_i$$

$$\overline{Z^n} = \prod_{i=1}^{N} e^{-n\beta V_i} = \overline{e^{-n\beta V_i}}^N = \exp\left[N \sum_{m=1}^{\infty} \frac{n^m}{m!} (-\beta)^m \langle V^m \rangle_c\right]$$
Control limit theorem for F 22. (F Gaussian \leftrightarrow 7 log normal)

Central limit theorem for F?? (F Gaussian \longleftrightarrow $Z \log$ -normal)

If F were simply Gaussian, higher than second cumulants (m>2) would be absent!

- Indeed: good approximation for small moments n! (senses bulk of P(Z))
- But: large moments Z^n are dominated by (non-universal) tails of P(Z)(← rare disorder configurations!)
- These tails and the too rapid growth (faster than n!) of high moments Zⁿ make the inference of P(Z) from its integer moments impossible (solution is not unique)

$$Z = \prod_{i=1}^{N} e^{-\beta V_i} \qquad F = -\frac{\ln(Z)}{\beta} = \sum_{i=1}^{N} V_i$$

$$\overline{Z^n} = \prod_{i=1}^{N} e^{-n\beta V_i} = \overline{e^{-n\beta V_i}}^N = \exp\left[N \sum_{m=1}^{\infty} \frac{n^m}{m!} (-\beta)^m \langle V^m \rangle_c\right]$$

Up to which n is the "log normal" approximation good?

$$\overline{Z^n} \approx \exp \left[N \left(-n\beta \langle V \rangle + \frac{n^2}{2} \beta^2 \langle V^2 \rangle_c + \ldots \right) \right]$$

$$Z = \prod_{i=1}^{N} e^{-\beta V_i} \qquad F = -\frac{\ln(Z)}{\beta} = \sum_{i=1}^{N} V_i$$

$$\overline{Z^n} = \prod_{i=1}^{N} e^{-n\beta V_i} = \overline{e^{-n\beta V_i}}^N = \exp\left[N \sum_{m=1}^{\infty} \frac{n^m}{m!} (-\beta)^m \langle V^m \rangle_c\right]$$

Up to which n is the "log normal" approximation good?

$$\overline{Z^n} \approx \exp \left[N \left(-n\beta \langle V \rangle + \frac{n^2}{2} \beta^2 \langle V^2 \rangle_c + \ldots \right) \right]$$

$$n \ll n^* \sim T \frac{\langle V^2 \rangle_c}{\langle V^3 \rangle_c}$$
 Higher cumulants can be neglected.

$$Z = \prod_{i=1}^{N} e^{-\beta V_i} \qquad F = -\frac{\ln(Z)}{\beta} = \sum_{i=1}^{N} V_i$$

$$\overline{Z^n} = \prod_{i=1}^{N} e^{-n\beta V_i} = \overline{e^{-n\beta V_i}}^N = \exp\left[N \sum_{m=1}^{\infty} \frac{n^m}{m!} (-\beta)^m \langle V^m \rangle_c\right]$$

Up to which *n* is the "log normal" approximation good?

$$\overline{Z^n} \approx \exp \left[N \left(-n\beta \langle V \rangle + \frac{n^2}{2} \beta^2 \langle V^2 \rangle_c + \ldots \right) \right]$$

$$n \ll n^* \sim T \frac{\langle V^2 \rangle_c}{\langle V^3 \rangle_c}$$
 Higher cumulants can be neglected.

BUT: always breaks down, even for n=1, for $T \lesssim T_* = \frac{(V^*)_c}{\langle V/2 \rangle}$

$$Z = \prod_{i=1}^{N} e^{-\beta V_i} \qquad F = -\frac{\ln(Z)}{\beta} = \sum_{i=1}^{N} V_i$$

$$\overline{Z^n} = \prod_{i=1}^{N} e^{-n\beta V_i} = \overline{e^{-n\beta V_i}}^N = \exp\left[N \sum_{m=1}^{\infty} \frac{n^m}{m!} (-\beta)^m \langle V^m \rangle_c\right]$$

Up to which *n* is the "log normal" approximation good?

$$\overline{Z^n} \approx \exp \left[N \left(-n\beta \langle V \rangle + \frac{n^2}{2} \beta^2 \langle V^2 \rangle_c + \ldots \right) \right]$$

Need a way to extrapolate moments to small $n \rightarrow 0$! Ideally: Disorder-average the (*typical*) free energy, not the partition function, which is dominated by rare disorder!

$$\overline{F} = \lim_{n \to 0} \frac{\overline{Z^n} - 1}{n}$$

Self-averaging

Note:

$$\overline{F} = \lim_{n \to 0} \frac{\overline{Z^n} - 1}{n}$$

In contrast to Z, the free energy F is expected to be *self-averaging*:

For a large system, F is essentially a sum of many mutually independent subvolumes, each of which contains its own disorder realization. The total free energy of a thermodynamically large system $(N, V \to \infty)$ thus automatically averages over disorder realizations, and one expects

$$F/N \stackrel{N \to \infty}{\to} \overline{F}/N$$

Self-averaging

Note:

$$\overline{F} = \lim_{n \to 0} \frac{\overline{Z^n} - 1}{n}$$

In contrast to Z, the free energy F is expected to be *self-averaging*:

For a large system, F is essentially a sum of many mutually independent subvolumes, each of which contains its own disorder realization. The total free energy of a thermodynamically large system $(N, V \to \infty)$ thus automatically averages over disorder realizations, and one expects

$$F/N \stackrel{N \to \infty}{\to} \overline{F}/N$$

The derivatives wrt thermodynamic variables then yield global thermodynamic responses (specific heat, susceptibilities, etc).

Self-averaging

Note:

$$\overline{F} = \lim_{n \to 0} \frac{\overline{Z^n} - 1}{n}$$

In contrast to Z, the free energy F is expected to be *self-averaging*:

For a large system, F is essentially a sum of many mutually independent subvolumes, each of which contains its own disorder realization. The total free energy of a thermodynamically large system $(N, V \to \infty)$ thus automatically averages over disorder realizations, and one expects

$$F/N \stackrel{N \to \infty}{\to} \overline{F}/N$$

The derivatives wrt thermodynamic variables then yield global thermodynamic responses (specific heat, susceptibilities, etc).

Difficulty: \overline{F} is hard to compute. - But often one already gains insight by studying the integer cumulants of Z and try to extrapolate to small n. - Now apply to the DPRM!

$$Z(X,t) = \int dx_0 Z(x_0,0) \int_{x_0(0)=x_0}^{x(t)=x} \mathcal{D}x(\tau) \exp\left[-\frac{1}{2} \int_0^t d\tau \left(\frac{dx}{d\tau}\right)^2 - \int_0^t d\tau V(x(\tau),\tau)\right]$$

$$Z(X,t) = \int dx_0 Z(x_0,0) \int_{x_0(0)=x_0}^{x(t)=x} \mathcal{D}x(\tau) \exp\left[-\frac{1}{2} \int_0^t d\tau \left(\frac{dx}{d\tau}\right)^2 - \int_0^t d\tau V(x(\tau),\tau)\right]$$

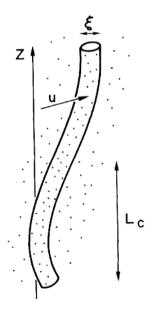
with Gaussian disorder:

$$\overline{V(x,t)} = 0$$

Covariance:

$$\overline{V(x,t)V(x',t')} = K(x-x')\delta(t-t')$$

Spatial correlations are usually of finite range ξ due to the physical extent (thickness) of the line



$$Z(X,t) = \int dx_0 Z(x_0,0) \int_{x_0(0)=x_0}^{x(t)=x} \mathcal{D}x(\tau) \exp\left[-\frac{1}{2} \int_0^t d\tau \left(\frac{dx}{d\tau}\right)^2 - \int_0^t d\tau V(x(\tau),\tau)\right]$$

with Gaussian disorder:

$$\overline{V(x,t)} = 0$$

Covariance:

$$\overline{V(x,t)V(x',t')} = K(x-x')\delta(t-t')$$

Study fluctuations by looking at

$$\begin{split} \overline{Z(X_{1},t)}\overline{Z(X_{2},t)}...\overline{Z(X_{n},t)} &= \\ \int \prod_{m=1}^{n} dx_{m0}Z(x_{m0},0) \int_{x_{m}(0)=x_{m0}}^{x_{m}(t)=X_{m}} \prod_{m=1}^{n} \mathcal{D}x_{m}(\tau) \\ \exp \left[-\frac{1}{2} \sum_{m} \int_{0}^{t} d\tau \left(\frac{dx_{m}}{d\tau} \right)^{2} + \frac{1}{2} \int_{0}^{t} d\tau d\tau' \sum_{m,m'=1}^{n} \overline{V(x_{m}(\tau),\tau)}V(x_{m'}(\tau'),\tau') \right] \\ &= \int \prod_{m=1}^{n} dx_{m0}Z(x_{m0},0) \int_{x_{m}(0)=x_{m0}}^{x_{m}(t)=X_{m}} \prod_{m=1}^{n} \mathcal{D}x_{m}(\tau) \\ \exp \left[-\frac{1}{2} \sum_{m} \int_{0}^{t} d\tau \left(\frac{dx_{m}}{d\tau} \right)^{2} + \frac{1}{2} \int_{0}^{t} d\tau \sum_{m,m'=1}^{n} K(x_{m}(\tau) - x_{m'}(\tau)) \right] \end{split}$$

Back to a Schrödinger-like equation:

$$\psi(X_1, ..., X_n, t) := \overline{Z(X_1, t)Z(X_2, t)...Z(X_n, t)}$$

$$\partial_t \psi = -\mathcal{H}\psi$$

$$\mathcal{H} = -\frac{1}{2} \sum_{m=1}^n \partial_{X_m}^2 - \frac{1}{2} \sum_{m,m'=1}^n K(X_m - X_{m'})$$

Back to a Schrödinger-like equation:

$$\begin{split} \psi(X_1,...,X_n,t) &:= \overline{Z(X_1,t)Z(X_2,t)...Z(X_n,t)} \\ \partial_t \psi &= -\mathcal{H} \psi \\ \mathcal{H} &= -\frac{1}{2} \sum_{m=1}^n \partial_{X_m}^2 - \frac{1}{2} \sum_{m,m'=1}^n K(X_m - X_{m'}) \end{split} \qquad \text{Irrelevant constant energy per polymer} \\ &= \frac{1}{2} \sum_{m=1}^n \partial_{X_m}^2 - \frac{1}{2} \sum_{m \neq m'=1}^n K(X_m - X_{m'}) - \frac{n}{2} K(0) \end{split}$$
 Attractive two-body potential!

Back to a Schrödinger-like equation:

$$\begin{split} \psi(X_1,...,X_n,t) &:= \overline{Z(X_1,t)Z(X_2,t)...Z(X_n,t)} \\ \partial_t \psi &= -\mathcal{H} \psi \\ \mathcal{H} &= -\frac{1}{2} \sum_{m=1}^n \partial_{X_m}^2 - \frac{1}{2} \sum_{m,m'=1}^n K(X_m - X_{m'}) \end{split} \qquad \text{Irrelevant constant energy per polymer} \\ &= \frac{1}{2} \sum_{m=1}^n \partial_{X_m}^2 - \frac{1}{2} \sum_{m \neq m'=1}^n K(X_m - X_{m'}) - \frac{n}{2} K(0) \end{split}$$
 Attractive two-body potential!

Disorder has disappeared. BUT: a given polymer still feels where the low disorder potentials were: It is where one preferentially finds other polymer copies!

The disorder average indeed produces an attraction between replica.

Back to a Schrödinger-like equation:

$$\psi(X_1, ..., X_n, t) := \overline{Z(X_1, t)Z(X_2, t)...Z(X_n, t)}$$

$$\partial_t \psi = -\mathcal{H}\psi$$

$$\mathcal{H} = -\frac{1}{2} \sum_{m=1}^n \partial_{X_m}^2 - \frac{1}{2} \sum_{m, m'=1}^n K(X_m - X_{m'})$$

$$= \frac{1}{2} \sum_{m=1}^n \partial_{X_m}^2 - \frac{1}{2} \sum_{m \neq m'=1}^n K(X_m - X_{m'}) - \frac{n}{2}K(0)$$

"Solution":

$$\psi(X_1, ..., X_n, 0) = Z(X_1, 0)Z(X_2, 0)...Z(X_n, 0) := \psi_0$$

$$\psi(X_1, ..., X_n, t) = \langle \mathbf{X} | e^{-\mathcal{H}t} | \psi_0 \rangle = \sum_k \langle \mathbf{X} | \psi_k \rangle \langle \psi_k | e^{-E_k(n)t} | \psi_0 \rangle$$

Back to a Schrödinger-like equation:

$$\psi(X_1, ..., X_n, t) := \overline{Z(X_1, t)Z(X_2, t)...Z(X_n, t)}$$

$$\partial_t \psi = -\mathcal{H}\psi$$

$$\mathcal{H} = -\frac{1}{2} \sum_{m=1}^n \partial_{X_m}^2 - \frac{1}{2} \sum_{m, m'=1}^n K(X_m - X_{m'})$$

$$= \frac{1}{2} \sum_{m=1}^n \partial_{X_m}^2 - \frac{1}{2} \sum_{m \neq m'=1}^n K(X_m - X_{m'}) - \frac{n}{2}K(0)$$

"Solution":

$$\psi(X_1, ..., X_n, 0) = Z(X_1, 0)Z(X_2, 0)...Z(X_n, 0) := \psi_0$$

$$\psi(X_1, ..., X_n, t) = \langle \mathbf{X} | e^{-\mathcal{H}t} | \psi_0 \rangle \approx \langle \mathbf{X} | \psi_{GS} \rangle \langle \psi_{GS} | e^{-E_{GS}(n)t} | \psi_0 \rangle$$

Long propagation: Ground state of the n-polymer problem?

$$\mathcal{H}' = \frac{1}{2} \sum_{m=1}^{n} \partial_{X_m}^2 - \frac{1}{2} \sum_{m \neq m'=1}^{n} K(X_m - X_{m'})$$

$$\psi_{\rm GS}$$
 ?

Consider short range correlations, $K(x) \rightarrow g\delta(x)$

- → Lieb-Liniger repulsive 1d Bose gas (as probed in cold atoms!).
- Solvable exactly by Bethe ansatz (full eigenstate spectrum)

Long propagation: Ground state of the n-polymer problem?

$$\mathcal{H}' = \frac{1}{2} \sum_{m=1}^{n} \partial_{X_m}^2 - \frac{1}{2} \sum_{m \neq m'=1}^{n} K(X_m - X_{m'})$$

$$\psi_{\rm GS}$$
 ?

Consider short range correlations, $K(x) \rightarrow g\delta(x)$

- → Lieb-Liniger repulsive 1d Bose gas (as probed in cold atoms!).
- Solvable exactly by Bethe ansatz (full eigenstate spectrum)
- Ground state: single bound state of all n particles (Bethe ansatz string) with wavefunction

$$\psi_G(X_1, ..., X_n) = \exp \left[-\frac{g}{4} \sum_{m \neq m'} |X_m - X_{m'}| \right]$$

$$E_G = -\frac{g^2}{24} (n^3 - n)$$

$$\mathcal{H}' = \frac{1}{2} \sum_{m=1}^{n} \partial_{X_m}^2 - \frac{1}{2} \sum_{m \neq m'=1}^{n} K(X_m - X_{m'})$$

Scaling analysis of a bound state of n particles, of size R:

$$E_{\rm bd}(n,R) \sim \frac{n}{R^2} - g \frac{n^2}{R}$$
 $R_{\rm min} \sim \frac{1}{gn}$
 $E_{\rm GS} \sim E_{\rm bd}(n,R_{\rm min}) \sim -g^2 n^3$

$$\mathcal{H}' = \frac{1}{2} \sum_{m=1}^{n} \partial_{X_m}^2 - \frac{1}{2} \sum_{m \neq m'=1}^{n} K(X_m - X_{m'})$$

Scaling analysis of a bound state of n particles, of size R:

$$E_{\rm bd}(n,R) \sim \frac{n}{R^2} - g \frac{n^2}{R}$$

$$R_{\rm min} \sim \frac{1}{gn}$$

$$E_{\rm GS} \sim E_{\rm bd}(n,R_{\rm min}) \sim -g^2 n^3 \qquad \longleftrightarrow \qquad E_G = -\frac{g^2}{24}(n^3 - n)$$

$$\mathcal{H}' = \frac{1}{2} \sum_{m=1}^{n} \partial_{X_m}^2 - \frac{1}{2} \sum_{m \neq m'=1}^{n} K(X_m - X_{m'})$$

Scaling analysis of a bound state of n particles, of size R:

$$E_{\rm bd}(n,R) \sim \frac{n}{R^2} - g \frac{n^2}{R}$$

$$R_{\rm min} \sim \frac{1}{gn}$$

$$E_{\rm GS} \sim E_{\rm bd}(n,R_{\rm min}) \sim -g^2 n^3 \qquad \longleftrightarrow \qquad E_G = -\frac{g^2}{24}(n^3 - n)$$

- Rationalizes the n³ scaling
- Breakdown of delta function approximation for n > n* ~ $1/g\xi \iff R_{\min}(n^*) \sim \xi$
- Beyond: non-universal behavior depending on extreme values of local potential

How to infer something about p(Z) from the moments at $n < n^*$?

$$\overline{Z^n(X,t)} \propto \exp(Cnt + \frac{g^2}{24}t(n^3 - n)) \stackrel{?}{=} \exp\left[\sum_k \frac{n^k}{k!} \overline{(-\beta F)^k}^c\right]$$

$$\overline{Z^n(X,t)} \propto \exp(Cnt + \frac{g^2}{24}t(n^3 - n)) \stackrel{?}{=} \exp\left[\sum_k \frac{n^k}{k!} \overline{(-\beta F)^k}^c\right]$$

Naively seems to suggest that

$$\overline{(-\beta F)^3}^c \sim t \qquad \delta F \sim t^{1/3}$$

$$\overline{Z^n(X,t)} \propto \exp(Cnt + \frac{g^2}{24}t(n^3 - n)) \stackrel{?}{=} \exp\left[\sum_k \frac{n^k}{k!} \overline{(-\beta F)^k}^c\right]$$

Naively seems to suggest that

$$\overline{(-\beta F)^3}^c \sim t \qquad \delta F \sim t^{1/3}$$
 But also, that
$$\overline{(-\beta F)^2}^c = 0$$

Which cannot be!

$$\overline{Z^n(X,t)} \propto \exp(Cnt + \frac{g^2}{24}t(n^3-n)) \stackrel{?}{=} \exp\left[\sum_k \frac{n^k}{k!}\overline{(-\beta F)^k}^c\right]$$
 Naively seems to suggest that
$$\overline{(-\beta F)^3}^c \sim t \qquad \delta F \sim t^{1/3}$$
 But also, that
$$\overline{(-\beta F)^2}^c = 0$$
 Which cannot be! Resolution:
$$t \to \infty \text{ at fixed n} \qquad \Longleftrightarrow \qquad \text{Expansion around } n \to 0 \text{, at fixed t}$$

These limits do not commute!

$$\overline{Z^n(X,t)} \propto \exp(Cnt + \frac{g^2}{24}t(n^3 - n)) \stackrel{?}{=} \exp\left[\sum_k \frac{n^k}{k!} \overline{(-\beta F)^k}^c\right]$$

Naively seems to suggest that

$$\overline{(-\beta F)^3}^c \sim t \qquad \delta F \sim t^{1/3}$$

But also, that $\overline{(-\beta F)^2}^c=0$

Which cannot be!

$$\ln \overline{Z^n(t)} = Cnt + \varphi(nt^{\theta})$$

Assume that the singular part of $ln(Z^n)$ as $t \to \infty$, $n \to 0$ are given by a scaling function $\varphi(nt^{\theta})$

$$\overline{Z^n(X,t)} \propto \exp(Cnt + \frac{g^2}{24}t(n^3 - n)) \stackrel{?}{=} \exp\left[\sum_k \frac{n^k}{k!} \overline{(-\beta F)^k}^c\right]$$

Naively seems to suggest that

$$\overline{(-\beta F)^3}^c \sim t \qquad \delta F \sim t^{1/3}$$

But also, that $\overline{(-\beta F)^2}^c = 0$

Which cannot be!

$$\ln \overline{Z^n(t)} = Cnt + \varphi(nt^\theta) \qquad \text{Extensivity \sim t !}$$
 Assume that the singular part of $\ln(\mathbf{Z^n})$ as $t \to \infty$, $= Cnt + C'n^{1/\theta}t$, $t \to \infty$ $n \to 0$ are given by a scaling function $\varphi(nt^\theta)$

$$\overline{Z^n(X,t)} \propto \exp(Cnt + \frac{g^2}{24}t(n^3 - n)) \stackrel{?}{=} \exp\left[\sum_k \frac{n^k}{k!} \overline{(-\beta F)^k}^c\right]$$

Naively seems to suggest that

$$\overline{(-\beta F)^3}^c \sim t \qquad \delta F \sim t^{1/3}$$

But also, that $\overline{(-\beta F)^2}^c=0$

Which cannot be!

$$\ln \overline{Z^n(t)} = Cnt + \varphi(nt^\theta) \qquad \text{Extensivity \sim t !}$$
 Assume that the singular part of $\ln(\mathbf{Z^n})$ as $t \to \infty$, $= Cnt + C'n^{1/\theta}t, \quad t \to \infty$ $n \to 0$ are given by a scaling function $\varphi(nt^\theta) = Cnt + a_1nt^\theta + a_2(nt^\theta)^2 + ..., \quad n \to 0$

$$\overline{Z^n(X,t)} \propto \exp(Cnt + \frac{g^2}{24}t(n^3 - n)) \stackrel{?}{=} \exp\left[\sum_k \frac{n^k}{k!} \overline{(-\beta F)^k}^c\right]$$

Naively seems to suggest that

$$\overline{(-\beta F)^3}^c \sim t$$

$$\theta = \frac{1}{3}$$

Which cannot be! Resolution:

$$\ln \overline{Z^n(t)} = Cnt + \varphi(nt^{\theta})$$

Assume that the singular part of $ln(Z^n)$ as $t \to \infty$, $n \to 0$ are given by a scaling function $\varphi(nt^{\theta}) = Cnt + a_1nt^{\theta} + a_2(nt^{\theta})^2 + ... \quad n \to 0$

$$= Cnt + C'n^{1/\theta}t, \quad t \to \infty$$

$$= Cnt + a_1nt^{\theta} + a_2(nt^{\theta})^2 + ..., \quad n \to 0$$

$$\overline{Z^n(X,t)} \propto \exp(Cnt + \frac{g^2}{24}t(n^3 - n)) \stackrel{?}{=} \exp\left[\sum_k \frac{n^k}{k!} \overline{(-\beta F)^k}^c\right]$$

Naively seems to suggest that

$$\overline{(-eta F)^3}^c \sim t \qquad \delta F$$
 But also, that $\overline{(-eta F)^2}^c = 0$

$$\delta F \sim t^{1/3}$$

$$\overline{(-\beta F)^2}^c = 0$$

Which cannot be! Resolution:

$$\ln \overline{Z^n(t)} = Cnt + \varphi(nt^{\theta})$$

Assume that the singular part of $ln(Z^n)$ as $t \to \infty$, $n \to 0$ are given by a scaling function $\varphi(nt^{\theta})$

$$= Cnt + C'n^{1/\theta}t \qquad t \to \infty$$

$$=Cnt + a_1nt^{\theta} + a_2(nt^{\theta})^2 + ..., \quad n \to 0$$

Replica approach

Replica approach yields independently the KPZ/DPRM energy exponent $\theta = \frac{1}{3}$!

$$\theta = \frac{1}{3}$$

Replica approach

Replica approach yields independently the KPZ/DPRM energy exponent $\theta = \frac{1}{2}$!

$$\theta = \frac{1}{3}$$

A full Bethe ansatz computation of $\psi(X_1,...,X_n,0)=Z(X_1,0)Z(X_2,0)...Z(X_n,0):=\psi_0$ $\psi(X_1, ..., X_n, t) = \langle \mathbf{X} | e^{-\mathcal{H}t} | \psi_0 \rangle = \sum_{l} \langle \mathbf{X} | \psi_k \rangle \langle \psi_k | e^{-E_k(n)t} | \psi_0 \rangle$

with appropriate analytic continuation to n = 0 has been achieved (Calabrese+Le Doussal)

Again: free energy fluctuations are governed by Tracy Widom distribution

(GUE for point to point DPRM; GOE for line to point)

Replica approach

Replica approach yields independently the KPZ/DPRM energy exponent $\theta = \frac{1}{2}$!

$$\theta = \frac{1}{3}$$

A full Bethe ansatz computation of $\psi(X_1,...,X_n,0)=Z(X_1,0)Z(X_2,0)...Z(X_n,0):=\psi_0$ $\psi(X_1, ..., X_n, t) = \langle \mathbf{X} | e^{-\mathcal{H}t} | \psi_0 \rangle = \sum_{k} \langle \mathbf{X} | \psi_k \rangle \langle \psi_k | e^{-E_k(n)t} | \psi_0 \rangle$

with appropriate analytic continuation to n = 0 has been achieved (Calabrese+Le Doussal)

Again: free energy fluctuations are governed by Tracy Widom distribution

(GUE for point to point DPRM; GOE for line to point)

Beyond the above, the replica approach allows to analyze finite range correlators, T effects etc.

Exercises

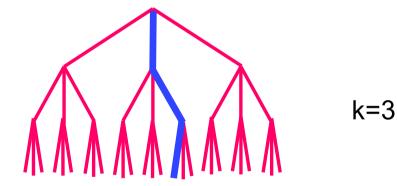
Replica approach to DPRM

- Check the ground state wavefunction of the n-polymer problem and compute its energy.
- Consider D=2 transverse directions instead of 1. Do you expect a bound state?
 Repeat the scaling analysis for this case. Does it allow to conclude anything about the scaling of energy with n and thus for the energy exponent θ?

Exercises

Directed polymer on a Cayley tree

Consider a Cayley tree with branching number k



- A polymer goes from any leaf (bottom to the top), its energy being the sum of site energies E_i encountered along the path, $E = \sum_{i \in path} E_i$
- Derive a recursion equation for the partition function (at finite T), as you progress from the leaves towards the root.
- Derive a recursion for the zero temperature limit (minimal energy configuration)!

Exercises

• At generation t from the leaves define the partition function Z(t) and the quantity

$$G_t(x) = \overline{\exp(-e^{-\beta x}Z(t))}$$

Show that the above recursion implies that

$$G_{t+1}(x) = \int dV \rho(V) [G_t(x+V)]^k$$

This can be shown to have travelling wave solution of the form w(x - ct). Determining c amounts to computing the free energy density.